Jump to content
This site uses cookies. Continued use is acceptance of our Terms of Use and Privacy Policy. More Info... ×
  • Welcome to Celiac.com!

    You have found your celiac tribe! Join us and ask questions in our forum, share your story, and connect with others.




  • Celiac.com Sponsor (A1):



    Celiac.com Sponsor (A1-M):


  • Get Celiac.com Updates:
    Support Our Content
    eNewsletter
    Donate
  • Record is Archived

    This article is now archived and is closed to further replies.

    Jefferson Adams
    Jefferson Adams

    Duodenal Bacteria from Celiac Patients Has Distinct Impact on Gluten Breakdown and Immunogenicity

    Reviewed and edited by a celiac disease expert.

    Celiac.com 08/01/2016 - Symptoms and damage in celiac disease is caused by partially-degraded gluten peptides from wheat, barley and rye. Susceptibility genes are necessary to trigger celiac disease, but they can't do it alone. Some researchers suspect that these susceptibility genes might get help from conditions resulting from unfavorable changes in the microbiota.

    To better understand the whole picture, a team of researchers recently set out to examine gluten metabolism by opportunistic pathogens and commensal duodenal bacteria, and to characterize the ability of the resulting peptides to activate gluten-specific T-cells from celiac patients.

    Celiac.com Sponsor (A12):
    The research team included A Caminero, HJ Galipeau, JL McCarville, CW Johnston, S Bernier, AK Russell, J Jury, AR Herran, J Casqueiro, JA Tye-Din, MG Surette, NA Magarvey, D Schuppan, and EF Verdu. They are variously affiliated with the Farncombe Family Digestive Health Research Institute, and the Department of Biochemistry & Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research at McMaster University, Hamilton, Ontario, Canada; the Immunology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, Australia; the Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Área de Microbiología, Facultad de Biología y Ciencias Ambientales, Universidad de León, León, 24071 Spain; the Immunology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052 Australia; the Department of Gastroenterology, The Royal Melbourne Hospital, Grattan St., Parkville, Victoria, 3050 Australia, and the Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany.

    For their study, the team colonized germ-free C57BL/6 mice with bacteria isolated from the small intestine of celiac patients or healthy controls, selected by their in vitro gluten-degrading capacity. They then measured gliadin levels and proteolytic action in intestinal contents after gluten feeding.

    Using peripheral blood mononuclear cells from celiac patients after receiving a 3-day gluten challenge, the research team characterized by LC-MS/MS the eptides produced by bacteria used in mouse colonizations from the immunogenic 33-mer gluten peptide. They found that the bacterial colonizations created clear gluten degradation patterns in the small intestine of the mice.

    Pseudomonas aeruginosa (Psa), an opportunistic pathogen from celiac patients, exhibited elastase activity and produced peptides that better translocated the mouse intestinal barrier. Psa-modified gluten peptides activated gluten-specific T-cells from celiac patients. In contrast, Lactobacillus spp. from the duodenum of non-celiac controls degraded gluten peptides produced by human and Psa proteases, reducing their immunogenicity.

    From these data, the research team concludes that small intestinal bacteria show clear gluten metabolic patterns in vivo, increasing or reducing gluten peptide immunogenicity.

    This microbe-gluten-host interaction may modulate autoimmune risk in genetically susceptible persons and may underlie any connection between celiac disease and microbial imbalance or maladaptation in the digestive tract.

    Source:

    • Open Original Shared Link


    User Feedback

    Recommended Comments

    There are no comments to display.



    Guest
    This is now closed for further comments

  • Get Celiac.com Updates:
    Support Celiac.com:
    Donate
  • About Me

    Jefferson Adams

    Jefferson Adams is Celiac.com's senior writer and Digital Content Director. He earned his B.A. and M.F.A. at Arizona State University. His articles, essays, poems, stories and book reviews have appeared in numerous magazines, journals, and websites, including North American Project, Antioch Review, Caliban, Mississippi Review, Slate, and more. He is the author of more than 2,500 articles on celiac disease. His university coursework includes studies in science, scientific methodology, biology, anatomy, physiology, medicine, logic, and advanced research. He previously devised health and medical content for Colgate, Dove, Pfizer, Sharecare, Walgreens, and more. Jefferson has spoken about celiac disease to the media, including an appearance on the KQED radio show Forum, and is the editor of numerous books, including "Cereal Killers" by Scott Adams and Ron Hoggan, Ed.D.

    >VIEW ALL ARTICLES BY JEFFERSON ADAMS

     


  • Celiac.com Sponsor (A17):
    Celiac.com Sponsor (A17):





    Celiac.com Sponsors (A17-M):




  • Related Articles

    Jefferson Adams
    Celiac.com 08/06/2014 - Although the role of human digestive proteases in gluten proteins is quite well known, researchers don’t know much about the role of gut bacteria in the metabolism of these proteins. A research team recently set out to explore the diversity of the cultivable human gut microbiome involved in gluten metabolism.
    Their goal was to isolate and characterize human gut bacteria involved in the metabolism of gluten proteins. The team included Alberto Caminero, Alexandra R. Herrán, Esther Nistal, Jenifer Pérez-Andrés, Luis Vaquero, Santiago Vivas, José María G. Ruiz de Morales, Silvia M. Albillos and Javier Casqueiro.
    They are variously associated with the Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), the Área de Microbiología, Facultad de Biología...


    Jefferson Adams
    Celiac.com 02/09/2015 - Do you suffer from persistent celiac symptoms in spite of following a strict gluten-free diet and having normal small bowel mucosa? Many celiac patients do. Moreover, typical explanations, such as accidental gluten-intake or the presence of other gastrointestinal disease, do not account for all of the symptoms in these patients.
    Recent studies have suggested that changes in intestinal microbiota are associated with autoimmune disorders, including celiac disease.
    A team of researchers recently set out to determine if abnormal intestinal microbiota may in fact be associated with persistent gastrointestinal symptoms in gluten-free celiac disease patients. The research team included Pirjo Wacklin PhD, Pilvi Laurikka, Katri Lindfors PhD, Pekka Collin MD, Teea Salmi...


    Jefferson Adams
    Celiac.com 11/20/2015 - A Canadian researcher has discovered what might be a big step toward preventing celiac disease. Dr. Elena Verdú, an associate professor at the Farncombe Family Digestive Health Research Institute at McMaster University, has found that bacteria in the gut may contribute to the body's response to gluten. 
    If her discovery pans out, it may be possible to treat, or even prevent, celiac disease by changing the the type of bacteria in the gut. "By changing the type of bacteria in the gut, we could change the inflammatory response to gluten," says Verdú.
    So far, researchers have been unable to explain why 30 per cent of people have genes that can cause celiac disease, but only 2 to 5 per cent actually develop it. Also a mystery is why the disease develops at any ag...


    Jefferson Adams
    Gut Microorganisms Cause Gluten-Induced Pathology in Mouse Model of Celiac Disease
    Celiac.com 01/18/2016 - How come only 2% to 5% of genetically susceptible individuals develop celiac disease?
    Researchers attempting to answer that question have turned their focus to environmental factors, including gut microorganisms, that may contribute to the development of celiac disease.
    In a recent study, published in The American Journal of Pathology, researchers using a humanized mouse model of gluten sensitivity found that the gut microbiome can play an important role in the body's response to gluten.
    Their data show that the rise in overall celiac disease rates over the last 50 years may be driven, at least partly, by variations in gut microbiota. If this proves to be true, then doctors may be able to craft "specific microbiota-based therapies" that "aid in the prevention...


  • Recent Activity

    1. - trents replied to Pua's topic in Celiac Disease Pre-Diagnosis, Testing & Symptoms
      6

      Pretty desperate for some guidance

    2. - Pua replied to Pua's topic in Celiac Disease Pre-Diagnosis, Testing & Symptoms
      6

      Pretty desperate for some guidance

    3. - trents replied to Marilyn1941's topic in Celiac Disease Pre-Diagnosis, Testing & Symptoms
      2

      Does 101gl mean. I have celiac desease

    4. - Wheatwacked replied to Pua's topic in Celiac Disease Pre-Diagnosis, Testing & Symptoms
      6

      Pretty desperate for some guidance

    5. - Wheatwacked replied to Marilyn1941's topic in Celiac Disease Pre-Diagnosis, Testing & Symptoms
      2

      Does 101gl mean. I have celiac desease


  • Celiac.com Sponsor (A19):



  • Member Statistics

    • Total Members
      125,835
    • Most Online (within 30 mins)
      7,748

    Ellouise
    Newest Member
    Ellouise
    Joined

  • Celiac.com Sponsor (A20):


  • Forum Statistics

    • Total Topics
      120.8k
    • Total Posts
      69k

  • Celiac.com Sponsor (A22):




  • Who's Online (See full list)


  • Celiac.com Sponsor (A21):



  • Popular Now

    • Patrick-Tyler
      5
    • Elliebee
    • GeordieGeezer
  • Popular Articles

    • Scott Adams
    • Scott Adams
    • Scott Adams
    • Scott Adams
    • Scott Adams
  • Upcoming Events

×
×
  • Create New...